Handbook of European HPC projects

DCoMEX

Data Driven Computational Mechanics at Exascale

DCoMEX aims to provide unprecedented advances to the field of Computational Mechanics by developing novel numerical methods enhanced by Artificial Intelligence, along with a scalable software framework that enables exascale computing. 

A key innovation of our project is the development of AISolve, a novel scalable library of AI-enhanced algorithms for the solution of large scale sparse linear system that are the core of computational mechanics. 

Our methods fuse physics-constrained machine learning with efficient block-iterative methods and incorporate experimental data at multiple levels of fidelity to quantify model uncertainties. Efficient deployment of these methods in exascale supercomputers will provide scientists and engineers with unprecedented capabilities for predictive simulations of mechanical systems in applications ranging from bioengineering to manufacturing. 

DCoMEX exploits the computational power of modern exascale architectures, to provide a robust and user-friendly framework that can be adopted in many applications. This frame-work is comprised of AI-Solve library integrated in two complementary computational mechanics HPC libraries. The first is a general-purpose multiphysics engine and the second a Bayesian uncertainty quantification and optimisation platform. 

We will demonstrate DCoMEX potential by detailed simulations in two case studies: 

  • patient-specific optimization of cancer immunotherapy treatment, and 
  • design of advanced composite materials and structures at multiple scales. 

We envision that software and methods developed in this project can be further customized and also facilitate developments in critical European industrial sectors like medicine, infrastructure, materials, automotive and aeronautics design. 

PROJECT’S CONTACT:

Project’s email

Extreme scale computing and data driven technologies

Call:
EuroHPC-01-2019

Coordinating Organization:
NTUA National Technical University of Athens, Greece

Project Timespan
2021-04-01 – 2024-03-31

Other Partners:
  • ETHZ – Eidgenössische Technische Hochschule Zürich, Switzerland
  • University of Cyprus, Cyprus
  • Technische Universität München, Germany 
  • National Infrastructures for Research and Technology, Greece