Handbook of European HPC projects

METASAT

Modular model-based design and testing for applications in satellites

Satellite design is becoming increasingly more complex. To address this challenge, the space sector is proactively seeking innovative methods and tools based on various Industry 4.0 models. However, these technologies face several major challenges with respect to the hardware platform’s computational power, software layer and design techniques. The EU-funded METASAT project intends to develop and test a toolchain that designs software modules for hardware/software layers that are considered promising solutions. The novel design toolchain will minimise the time and cost of developing new systems as complexity increases. This should boost competitiveness and innovation.

The space domain, as many other engineering sectors, is actively considering novel methods and tools based on artificial intelligence, Digital Twins, virtual design and testing, and other Industry 4.0 concepts, in order to manage the increased complexity of the design of upcoming satellites. Nevertheless, especially from the satellite on-board software engineering point of view, these technologies require a solid ground to be built upon. First of all, the computational power of the hardware platform must meet the needs of the advanced algorithms running on top of it. The software layer too must both allow an efficient use of the hardware resources and at the same time guarantee non-functional properties such as dependability in compliance with ECSS standards. Finally, the design methods need to adapt to the specific challenges posed by both the increased complexity of the hardware/software layers and the Industry 4.0 concepts.
The METASAT vision is that a design methodology based on Model-Based engineering jointly with the use of open architecture hardware constitutes that solid ground. To reach its vision, METASAT will leverage existing software virtualisation layers (e.g. hypervisors), that already provide guarantees in terms of standards compliance, on top of high-performance computing platforms based on open hardware architectures. The focus of the project will be on the development of a toolchain to design software modules for this hardware/software layer. Without such measures the time and cost of developing new systems could become prohibitive as system complexity grows, reducing competitiveness, innovation, and potentially dependability across the industry.

A high quality and complementary consortium comprising knowledge generators (IKL, BSC and ALES), plus an SME technology integrator (FEN) and an end user from the space sector (OHB), will be able to test in a real scenario the new design toolchain that will enable the runtime deployment of software modules.

PROJECT’S CONTACT:

Contact email

Call:
HORIZON-CL4-2021-SPACE-01

Coordinating Organization:
BSC Barcelona Supercomputing Center, Spain

Project Timespan
2023-01-01 – 2024-12-31

Other Partners:
  • ikerlan, Spain
  • fentISS, Spain
  • OHB System AG, Germany
  • Advanced Laboratory on Embedded Systems, Collins Aerospace, Italy